Small-amplitude excitations in a deformable discrete nonlinear Schrödinger equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

v - in t / 9 61 10 02 v 1 4 N ov 1 99 6 Small - amplitude excitations in a deformable discrete nonlinear Schrödinger equation

Small-amplitude excitations in a deformable discrete nonlinear Schrödinger equation. A detailed analysis of the small-amplitude solutions of a deformed discrete nonlin-ear Schrödinger equation is performed. For generic deformations the system possesses " singular " points which split the infinite chain in a number of independent segments. We show that small-amplitude dark solitons in the vicini...

متن کامل

Breathers for the Discrete Nonlinear Schrödinger Equation with Nonlinear Hopping

We discuss the existence of breathers and lower bounds on their power, in nonlinear Schrödinger lattices with nonlinear hopping. Our methods extend from a simple variational approach to fixed-point arguments, deriving lower bounds for the power which can serve as a threshold for the existence of breather solutions. Qualitatively, the theoretical results justify non-existence of breathers below ...

متن کامل

Periodic waves of a discrete higher order nonlinear Schrödinger equation ∗

The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...

متن کامل

A semi-discrete scheme for the stochastic nonlinear Schrödinger equation

We study the convergence of a semi-discretized version of a numerical scheme for a stochastic nonlinear Schrödinger equation. The nonlinear term is a power law and the noise is multiplicative with a Stratonovich product. Our scheme is implicit in the deterministic part of the equation as is usual for conservative equations. We also use an implicit discretization of the noise which is better sui...

متن کامل

Superfluidity versus disorder in the discrete nonlinear Schrödinger equation.

We study the discrete nonlinear Schrödinger equation (DNLS) in an annular geometry with on-site defects. The dynamics of a traveling plane-wave maps onto an effective nonrigid pendulum Hamiltonian. The different regimes include the complete reflection and refocusing of the initial wave, solitonic structures, and a superfluid state. In the superfluid regime, which occurs above a critical value o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 1997

ISSN: 1063-651X,1095-3787

DOI: 10.1103/physreve.55.4706